BACKGROUND AIMSExtracellular vesicles (EVs) are being tested for their use as novel therapeutics. However, the optimal source of EVs is currently under investigation. Amniotic fluid (AF) is a natural source of EVs that can be easily obtained for use in regenerative medicine, yet AF-EV characterization has not been fully explored.METHODSHere the authors demonstrate AF as a rich source of EVs and identify the microRNA and proteomic cargo. Bioinformatics analysis of this cargo revealed multiple pathway targets, including immunomodulatory, anti-inflammatory and free radical scavenging networks. The authors further demonstrated the therapeutic potential of this EV product as a novel preventative agent for bronchopulmonary dysplasia (BPD).RESULTSIntra-tracheal administration of AF-EVs preserved alveolar development, attenuated vascular remodeling and pulmonary hypertension, decreased lung pro-inflammatory cytokine expression and reduced macrophage infiltration in an experimental BPD model.CONCLUSIONSThe authors' results suggest that AF is a viable biological fluid for EV harvest and that AF-EVs have strong therapeutic potential for pulmonary diseases, such as BPD, warranting further development to transition this novel EV product into the clinic.