100 Clinical Results associated with College Charlemagne, Inc.
0 Patents (Medical) associated with College Charlemagne, Inc.
01 Dec 2015·3 BiotechQ4 · ENGINEERING & TECHNOLOGY
The role and significance of potential lipid-binding regions in the mitochondrial protein import motor: an in-depth in silico study
Q4 · ENGINEERING & TECHNOLOGY
Article
Author: Keller, Rob C A
Over the last two decades, an impressive progress has been made in the identification of novel factors in the translocation machineries of the mitochondrial protein import and their possible roles. The role of lipids and possible protein-lipids interactions remains a relatively unexplored territory. Investigating the role of potential lipid-binding regions in the sub-units of the mitochondrial motor might help to shed some more light in our understanding of protein-lipid interactions mechanistically. Bioinformatics results seem to indicate multiple potential lipid-binding regions in each of the sub-units. The subsequent characterization of some of those regions in silico provides insight into the mechanistic functioning of this intriguing and essential part of the protein translocation machinery. Details about the way the regions interact with phospholipids were found by the use of Monte Carlo simulations. For example, Pam18 contains one possible transmembrane region and two tilted surface bound conformations upon interaction with phospholipids. The results demonstrate that the presented bioinformatics approach might be useful in an attempt to expand the knowledge of the possible role of protein-lipid interactions in the mitochondrial protein translocation process.
01 Dec 2014·Journal of BiosciencesQ4 · BIOLOGY
Identification and in silico analysis of helical lipid binding regions in proteins belonging to the amphitropic protein family
Q4 · BIOLOGY
Article
Author: Keller, Rob C A
The role of protein-lipid interactions is increasingly recognized to be of importance in numerous biological processes. Bioinformatics is being increasingly used as a helpful tool in studying protein-lipid interactions. Especially recently developed approaches recognizing lipid binding regions in proteins can be implemented. In this study one of those bioinformatics approaches specialized in identifying lipid binding helical regions in proteins is expanded. The approach is explored further by features which can be easily obtained manually. Some interesting examples of members of the amphitropic protein family have been investigated in order to demonstrate the additional features of this bioinformatics approach. The results in this study seem to indicate interesting characteristics of amphitropic proteins and provide insight into the mechanistic functioning and overall understanding of this intriguing class of proteins. Additionally, the results demonstrate that the presented bioinformatics approach might be either an interesting starting point in protein-lipid interactions studies or a good tool for selecting new focus points for more detailed experimental research of proteins with known overall protein-lipid binding abilities.
01 Jan 2013·The Journal of Membrane BiologyQ4 · BIOLOGY
Prediction of Lipid-Binding Regions in Cytoplasmic and Extracellular Loops of Membrane Proteins as Exemplified by Protein Translocation Membrane Proteins
Q4 · BIOLOGY
Article
Author: Keller, Rob C A
The presence of possible lipid-binding regions in the cytoplasmic or extracellular loops of membrane proteins with an emphasis on protein translocation membrane proteins was investigated in this study using bioinformatics. Recent developments in approaches recognizing lipid-binding regions in proteins were found to be promising. In this study a total bioinformatics approach specialized in identifying lipid-binding helical regions in proteins was explored. Two features of the protein translocation membrane proteins, the position of the transmembrane regions and the identification of additional lipid-binding regions, were analyzed. A number of well-studied protein translocation membrane protein structures were checked in order to demonstrate the predictive value of the bioinformatics approach. Furthermore, the results demonstrated that lipid-binding regions in the cytoplasmic and extracellular loops in protein translocation membrane proteins can be predicted, and it is proposed that the interaction of these regions with phospholipids is important for proper functioning during protein translocation.
100 Deals associated with College Charlemagne, Inc.
100 Translational Medicine associated with College Charlemagne, Inc.