Petroleum hydrocarbon-contaminated groundwater often has a low indigenous microorganism population and lacks the necessary nutrient substrates for biodegradation reaction, resulting in a weak natural remediation ability within the groundwater ecosystem. In this paper, we utilized the principle of petroleum hydrocarbon degradation by microorganisms to identify effective nutrients (NaH2PO4, K2HPO4, NH4NO3, CaCl2, MgSO4·7H2O, FeSO4·7H2O, and VB12) and optimize nutrient substrate allocation through a combination of actual surveys of petroleum hydrocarbon-contaminated sites and microcosm experiments. Building on this, combining biostimulation and controlled-release technology, we developed a biodegradable chitosan-based encapsulated targeted biostimulant (i.e., YZ-1) characterized by easy uptake, good stability, controllable slow-release migration, and longevity to stimulate indigenous microflora in groundwater to efficiently degrade petroleum hydrocarbon. Results showed that YZ-1 extended the active duration of nutrient components by 5-6 times, with a sustainable release time exceeding 2 months. Under YZ-1 stimulation, microorganisms grew rapidly, increasing the degradation rate of petroleum hydrocarbon (10 mg L-1) by indigenous microorganisms from 43.03% to 79.80% within 7 d. YZ-1 can easily adapt to varying concentrations of petroleum hydrocarbon-contaminated groundwater. Specifically, in the range of 2-20 mg L-1 of petroleum hydrocarbon, the indigenous microflora was able to degrade 71.73-80.54% of the petroleum hydrocarbon within a mere 7 d. YZ-1 injection facilitated the delivery of nutrient components into the underground environment, improved the conversion ability of inorganic electron donors/receptors in the indigenous microbial community system, and strengthened the co-metabolism mechanism among microorganisms, achieving the goal of efficient petroleum hydrocarbon degradation.