Combination therapy is a promising strategy for lung adenocarcinoma (LUAD), due to the advantages of overcoming drug resistance, side effects, and tumor heterogeneity. Herein, we report a novel dual-targeting bimetallic nanozyme (MH-iRGD) consisting of nanosized manganese ferrite (MF) after encapsulating with dopamine and methacrylic anhydride to modify hyaluronic acid, followed by integrin receptor targeting peptide (HS-PEG3400-iRGD) modification for LUAD targeted therapy. Our study confirmed that MH-iRGD combined with near-infrared irradiation (NIR) possessed dramatic photothermal effects and reactive oxygen species (ROS) production and GSH depletion abilities. Importantly, MH-iRGD possessed dual-targeting capacities for LUAD cells overexpressed CD44 and αV-integrin receptors owing to hyaluronic acid coating and iRGD modification. Inhibitors of CD44 and integrins could impair the uptake of MH-iRGD in LUAD cells. Moreover, MH-iRGD + NIR displayed excellent anti-LUAD effects as a result of the production of intracellular ROS, consumption of glutathione (GSH) and mitochondrial dysfunction. Mechanistically, NIR robustly strengthened MH-iRGD-induced ferroptosis and apoptosis by down-regulating SLC7A11, GPX4, Bcl-2 levels while up-regulating Bax level. Specifically, ferroptosis and apoptosis were increased while the LUAD progression was inhibited after intravenous injection of MH-iRGD + NIR in xenograft mouse models. Taken together, our results indicate that MH-iRGD + NIR serves as a promising targeted therapy for LUAD, which broadens the applications of highly active dual-targeting bimetallic nanozymes.