Nirmatrelvir, the active compound of the drug Paxlovid, inhibits the Main protease of SARS-CoV-2 (MPro, 3CLPro, NSP5). Its therapeutic application reduces but does not abolish the progression of COVID-19 in humans. Here we report a strong synergy of Nirmatrelvir with inhibitors of the ER chaperone GRP78 (HSPA5, BiP). Combining Nirmatrelvir with the GRP78-antagonizing drug candidate HA15 strongly inhibits the replication of SARS-CoV-2, to a far greater extent than either drug alone, as observed by diminished cytopathic effect, levels of detectable virus RNA, TCID50 titers, and reduced accumulation of the non-structural proteins, as well as Spike and N proteins. The original SARS-CoV-2 strain as well as an Omicron variant were similarly susceptible towards the drug combination. Other GRP78 inhibitors or siRNAs targeting GRP78 also fortified the antiviral effect of Nirmatrelvir. In a hamster model of COVID-19, the combination of Nirmatrelvir with HA15 alleviated pneumonia-induced pulmonary atelectasis more effectively than the single drugs. In conclusion, inhibition of the virus Main protease and cellular GRP78 cooperatively diminishes virus replication and may improve COVID-19 therapy.