BACKGROUND/AIMThe over-expression of P-glycoprotein (P-gp) is a major mechanism underlying multidrug resistance (MDR). Co-treatment with Janus kinase 2 (Jak2) inhibitors sensitizes P-gp-over-expressing drug-resistant cancer cells. In this study, we evaluated pacritinib, a Jak2 inhibitor currently in phase III clinical trials.MATERIALS AND METHODSMicroscopic observation, cell viability assay, colony forming assay, rhodamine uptake tests, annexin V analyses, fluorescence-activated cell sorting (FACS), and western-blot analysis were performed to further investigate the mechanism of action.RESULTSWe found that pacritinib reduced cell viability, induced G2 arrest, and upregulated early apoptosis when administered to P-gp-over-expressing resistant KBV20C cells with vincristine (VIC). Moreover, apoptosis and G2 arrest in VIC-pacritinib-treated cells were involved in the upregulation of pH2AX expression. Pacritinib had an approximately 2-fold higher P-gp-inhibitory activity than the dimethyl sulfoxide (DMSO)-treated control, indicating that VIC-pacritinib sensitization involves the P-gp-inhibitory effects of pacritinib. Similar to VIC, other antimitotic drugs (vinorelbine, vinblastine, and eribulin) could also sensitize against KBV20C cells by co-treatment with pacritinib. Furthermore, comparison of pacritinib with previously characterized Jak2 inhibitors revealed that the VIC-pacritinib combination had sensitization effects similar to those of VIC- CEP-33779 or VIC-NVP-BSK805 combinations at lower doses in KBV20C cells. Generally, Jak2 inhibitor and VIC co-treatment sensitized P-gp-over-expressing resistant cancer cells by inducing early apoptosis.CONCLUSIONCollectively, pacritinib, induced G2 arrest, reduced cell viability, had high P-gp inhibitory activity, and upregulated the expression of pH2AX when used in combination with VIC. As pacritinib is a Jak2 inhibitor currently in phase III clinical trials, our findings may facilitate the application of this co-treatment in patients with MDR cancer.