Purpose:The International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) have jointly published a new code of practice (CoP), TRS483, for the dosimetry of small static photon fields used in external beam radiotherapy. It gave recommendations on how to perform reference dosimetry in nonstandard machine‐specific reference (msr) fields and measure field output factors in small fields. The purpose of this work was to perform a dosimetric evaluation of the recommendations given in this CoP.
Methods:All measurements were done in a Varian TrueBeam™ STx linear accelerator. Five ionization chambers were used for beam quality measurements, four Farmer type ionization chambers for performing reference dosimetry and two diodes for performing field output factor measurements. Field output factor measurements were done for fourteen field sizes (ranging from 0.5 cm × 0.5 cm to 10 cm × 10 cm). Beam energies used were: 6 MV WFF, 6 MV FFF, 10 MV WFF, and 10 MV FFF. Where appropriate, results from this study were compared with those obtained from the recommendations given in the IAEA TRS398 CoP, AAPM TG51 and TG51 Addendum protocols.
Results:Beam quality measurements show that for all beam energies and for equivalent square msr field sizes ranging from 4 cm × 4 cm to 10 cm × 10 cm, agreement between calculated and measured values of TPR20,10(10) was within 0.6%. When %dd(10,10)X was used as beam quality specifier, the agreement was found to be within 0.8%. Absorbed dose to water per unit monitor unit at the depth of maximum dose zmax in a beam of quality Q, /MU, was determined using both %dd(10,10)X and TPR20,10(10) as beam quality specifiers. Measured ratios of Dw,Q(zmax)/MU, determined using the two approaches, ranged between 0.999 and 1.000 for all the beam energies investigated. Comparison with TRS398, TG51 and TG51 addendum protocols show that depending on beam energy, the mean values of the ratios TRS398/TRS483, TG51/TRS483, and TG51 Addendum/TRS483 of Dw,Q(zmax)/MU determined using both approaches show excellent agreement with TRS398 CoP (to within 0.05%); agreement with TG51 and TG51 addendum was to within 0.3% for all four beam energies investigated. Field output factors, determined using the two methods recommended in the TRS483 CoP, showed excellent agreement between the two methods. For the 1 cm collimator field size, the mean value of the field output factor obtained from an average of the two detectors investigated was found to be 2% lower than the mean value of the uncorrected ratio of readings.
Conclusion:For beams with and without flattening filters, the values of Dw,Q (zmax)/MU obtained following the new CoP are found to be consistent with those obtained using TRS398, TG51 and TG51 addendum protocols to within 0.3%. Field output factors for small beams can be improved when the correction factors for different detectors included in TRS483 are appropriately incorporated into their dosimetry.