Matrix metalloproteinases (MMPs), zinc-dependent proteolytic enzymes, play a pivotal role in tumor metastasis by cleavage of extracellular matrix as well as non-matrix substrates. In this study, we examined the influence of DA-125, a new anthracyclin analog, on the gene expression of MMPs (MMP-2, MMP-9 and MT1-MMP), tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2) and in vitro invasiveness of human fibrosarcoma cells. Dose-dependent decreases of MMPs and TIMPs mRNA levels were observed in DA-125-treated HT1080 human fibrosarcoma cells detected by reverse transcriptase-polymerase chain reaction. Gelatin zymography analysis also showed a significant down-regulation of MMP-2 and MMP-9 expression in HT1080 cells treated with DA-125 compared to controls. In addition, DA-125 inhibited the invasion, motility and cell migration, and colony formation of tumor cells. These data, therefore, provide direct evidence for the role of DA-125 as a potential cancer chemotherapeutic agent, which can markedly inhibit the invasive capacity of malignant cells. Further, to clarify the transcriptional regulatory pathway, we primarily investigated the role of nuclear factor-kappaB (NF-kappaB) in the expression of MMPs by DA-125 in HT1080 cells. Electrophoretic mobility shift assay demonstrated that DA-125 modulates the binding activity of NF-kappaB. Using the luciferase reporter gene assay, a dose-dependent down-regulation of NF-kappaB-mediated luciferase expression was also observed. These results suggest that DA-125 down-regulates MMPs expression in HT1080 cells through the NF-kappaB-mediated pathway.