Iberin is a lower homologue of sulforaphane (SFN) which has shown effectiveness in addressing various pathologies, including its anti-inflammatory properties, antitumor activity against various cancers, and antimicrobial effects. Building on this activity, a series of carbohydrate-based analogues of the natural isothiocyanate (ITC) iberin were synthesized, and their anticancer and antioxidant activities were evaluated. Cytotoxicity studies on three cancer cell lines using Resazurin assay demonstrated significant cytotoxic activity, particularly against bladder cancer. The sulfonyl derivatives exhibited the most potent effects, with IC50 values comparable to those of reference natural isothiocyanates (from 10 to 20 μM). Computational simulations support the hypothesis that carbohydrate-based ITCs can interact with STAT3's SH2 domain in a manner similar to SFN, laying the groundwork for their potential development as STAT3-targeted anticancer agents. The antioxidant potential of these compounds was assessed by their ability to activate the Nrf2 factor, yielding CD values (concentration required to double luciferase activity compared to basal conditions) between 1.55 and 10.36 μM, without cytotoxicity at these concentrations. Notably, the phenylsulfone derivative 22β displayed slightly higher or comparable antioxidant activity to that of natural isothiocyanates. Based on these findings, this phenylsulfone analogue was selected as the optimal compound due to its dual anticancer and antioxidant activities. An additional advantage of this carbohydrate-based ITC is that it is a solid compound, making it easier to handle than natural isothiocyanates, which are typically liquids.