We previously reported that the thiol proteinase inhibitor, E-64-d, ameliorated amyloid β (Aβ)-induced reduction of soluble amyloid precursor protein α (sAPPα) secretion by reversing ceramide-induced protein kinase C down-regulation in SH-SY5Y neuroblastoma cells. In the present study, we showed that Aβ (1-42) peptide enhanced diacylglycerol (DAG) production by phospholipase D (PLD) activation in these cells. We subsequently examined whether PLD was involved in Aβ-induced reduction of sAPPα secretion and showed that 2 μM CAY10593, which selectively inhibits PLD2, ameliorated reduction of sAPPα secretion, whereas 50 nM CAY10593, which selectively inhibits PLD1, did not. Moreover, 50 µM propranolol, a phosphatidic acid phosphohydrolase inhibitor, also ameliorated Aβ-induced reduction of sAPPα secretion, suggesting that DAG may be responsible for Aβ-induced reduction of sAPPα. We subsequently examined whether DAG affects sAPPα secretion and showed that a DAG analog reduced sAPPα secretion in SH-SY5Y cells. In addition, DAG enhanced ceramide production by stimulating neutral sphingomyelinase (N-SMase) activity. We previously demonstrated that Aβ stimulates N-SMase activity in SH-SY5Y cells. Here, we showed that inhibition of PLD2 by 2 μM CAY10593 suppressed Aβ-induced N-SMase activation. Taken together, the results suggest that DAG produced through the PLD pathway is involved in Aβ-induced reduction of sAPPα secretion in SH-SY5Y cells.