Large, multinucleated cells, like syncytiotrophoblasts (STB), are not readily analyzed by standard methods used for single cells, such as single-cell RNA-sequencing and fluorescence-activated cellular sorting (FACS). Here we have demonstrated that fluorescence-activated nuclear sorting (FANS) is suitable to analyze nuclei from STB. Human pluripotent stem cells (PSCs) can be differentiated into a mixed trophoblast populations comprising approximately 20 % STB by treatment with BMP4 (Bone Morphogenetic Protein-4), plus A83-01 and PD173074, inhibitors of activin and FGF2 signaling, respectively (the BAP model) in about a week. Here we demonstrate that FANS can be used to separate two types of STB nuclei from the nine different clusters of trophoblast nuclei previously identified in the BAP model by single nucleus RNA sequencing (snRNAseq). Rather than using cell surface markers, as in FACS, transcription factors in various combinations were employed to target specific nuclear types. Nuclei were isolated at d 8 of BAP differentiation of H1 human embryonic stem cells and fixed in 4 % paraformaldehyde. After permeabilization in 0.1 % triton X-100, nuclei were incubated for 3 and 1 h at 4 °C with primary and secondary antibodies respectively and nuclear samples were then subjected to FANS. By using markers identified by snRNA and immunohistochemistry, nuclei were first sorted into a Topoisomerase-1, or TOP1, bright population and then into the two STB subpopulations by using antibodies to JUNB (Jun B Proto-Oncogene) and TFCP2L1 (Transcription Factor CP2 Like 1). The protocol established here is simple, straightforward, and efficient and can be used on a relatively large scale to sort individual subtypes of nuclei from mixed populations of trophoblasts for further analysis.