Numerous natural bioactive compounds extracted from Chinese medicines have been proved to be promising and potent agents in the treatment of ischemic stroke. Hydroxysafflor yellow A (HSYA), separated from Carthamus tinctorius, has increasingly attracted attention for its broad spectrum of pharmacological effects, especially of its neuroprotective action. Our previous studies revealed that HSYA plays significant beneficial roles in a dose-dependent manner in rats with focal cerebral ischemia. However, treatment with higher doses of HSYA appeared to bring about adverse reactions in the rats. In present study, we adopted tenuigenin (TEN), extracted from the Polygala tenuifolia root, in combination with HSYA to optimize the therapeutic strategy against ischemic stroke, and further explored the underlying mechanisms of action of the combination in vivo and in vitro. We firstly confirmed the pharmacological efficacies of co-treatment of HSYA and TEN in middle cerebral ischemia occlusion (MCAO) rats and observed the synergistic improvement of infarct volume, cerebral edema, and morphology of neuron cell body. Behavioral experiments indicated that combination of HSYA and TEN could synergistically improve motor and cognitive function in MCAO rats. We also observed increased viability and suppressed cell apoptosis after HSYA and TEN co-treatments in the oxygen-glucose deprivation/reperfusion (OGD/R) SH-SY5Y cells. Furthermore, JAK2/STAT3 and SOCS3 signaling interaction was demonstrated to be a critical responsor to the co-treatment of HSYA and TEN. In the subsequent experiments with silencing SOCS3 in OGD/R-exposed cells, we found that HSYA and TEN might suppress JAK2/STAT3 pathway through different regulatory mechanisms targeting SOCS3-negative feedback signaling. HSYA seemed to impose excessive activation of JAK2/STAT3 to trigger SOCS3-negative feedback signaling, while TEN appeared to provoke SOCS3 inhibitory feedback role directly to further attenuate JAK2-mediated signaling. Collectively, HSYA and TEN might modulate the crosstalk between JAK2/STAT3 and SOCS3 signaling pathways in different manners that eventually contributed to their synergistic therapeutic effects against cerebral ischemic stroke.