In situ immobilization is a potential approach that can be used to remediate low-to-medium levels of heavy-metal in contaminated-soil. There is little known about how modifications to soil characteristics may affect Pb's release from soil. The four different amendments, triple-superphosphate and attapulgite were combined in Ad-1; zeolite and triple-superphosphate were in Ad-2; hydroxyapatite and humus were in Ad-3; and nano-carbon. These amendments are mostly made of phyllosilicate minerals, humus, base minerals, and nano-carbon, respectively. Results revealed that the test amendments' maximal Pb-adsorption capacity varied from 7.47 to 17.67 mg g-1. Surface precipitation and ion-exchange were found to be the main mechanisms for Pb-adsorption by Ad-1 and Ad-2, while Ad-3 and Ad-4 were promising among the all, according to analysis of the modifications both before and after Pb loading. When the pH dropped (7-1) or the ion-strength rose (0-0.2 M), there was a discernible rise in the Pb-desorption percentages from the amendments. It was determined that Ad-3 and Ad-4 were more effective in situ immobilizing lead in contaminated-soils because of their high adsorption capacities (12.82 and 17.67 mg g-1) and low-desorption percentages (4.46-6.23%) at ion-strengths of 0.01-0.1 mol L-1 and pH levels ranging from 5 to 7.