The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is responsible for various pathogenic and non-pathogenic damage signals and plays a critical role in host defense against pathogens and physiological damage. However, inflammasome activation and its subsequent effects also lead to a variety of inflammatory diseases. In this study, we identified broxyquinoline, an FDA-approved antimicrobial drug, as a effective NLRP3 inflammasome inhibitor. Broxyquinoline suppressed NLRP3 inflammasome-dependent interleukin-1β (IL-1β) release, but did not affect NLRC4 or AIM2 inflammasome activation. Mechanistically, broxyquinoline directly targets Arg165 of NLRP3 protein, thus preventing NEK7-NLRP3 interaction, NLRP3 oligomerization, and ASC speck formation, without affecting the NF-κB pathway. Consequently, broxyquinoline significantly attenuated the progression of monosodium urate (MSU)-induced peritonitis and myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) in murine models. In conclusion, we demonstrated that broxyquinoline directly targets the NLRP3 protein to suppress the activation of NLRP3 inflammasome and provide a promising therapeutic agent for NLRP3 inflammasome-associated diseases.