This study investigated the impacts of rainstorms on the performance of a combined ultrafiltration (UF)-ozonation (O3) process for micropollutant removal and risk mitigation during municipal wastewater reclamation. Results reveal that the rainstorm triggered a substantial surge in dissolved organic matter (DOM) in secondary effluent, primarily composed of protein-like substances and terrestrial humus. Meanwhile, 12 commonly detected pharmaceuticals and personal care products (PPCPs) were found at concentrations slightly lower than in normal weather, ranging from 5.0 to 545.0 ng L-1. Following the rainstorm, the overall removals of PPCPs spanned a wide range of 14.8 %-77.7 %, where a significantly lower retention of high molecular-weight pollutants (e.g., ≥ 400 Da) was observed for UF. For the ozonation unit, the removals remained comparable, while the relative contribution of radical oxidation increased. This shift was related to the enhanced generation of HO• and/or other reactive species, driven by the enrichment of unsaturated proteins (originating from upstream sludge loss) as precursors. Higher concentrations of disinfection by-products (DBPs), reaching up to 1372.5 μg L-1, were observed in chlorinated effluents after the rainstorm, ascribing to the elevated content of terrestrial humus persisting through the treatments. While the risks associated with PPCPs were negligible, the formed DBPs posed considerable risks to human health (with cancer risk at 10-5) and aquatic ecosystem (with risk quotient up to 13.6), particularly post ozonation. These findings highlight the role of rainstorm-fueled DOM in reclaimed water quality and provide insights into ensuring reclaimed water safety under different weather conditions.