Pharmacological treatment of Parkinson's disease (PD) is entering a new and exciting era. Real promise now exists for the clinical application of a large range of molecules in development that will combat different aspects and stages of the condition. These include methyl- and ethyl-esterified forms of L-dopa (etilevodopa and melevodopa), inhibitors of enzymes such as monoamine oxidase type-B (eg, rasagiline), catechol-O-methyl transferase (eg, BIA-3202) and the monoamine re-uptake mechanism (eg, brasofensine). In addition, a range of full and partial dopamine agonists (eg, sumanirole, piribedil and BP-897) and their new formulations, for example, patch delivery systems (eg, rotigotine) are being developed. We also highlight non-dopaminergic treatments that will have wide ranging applications in the treatment of PD and L-dopa-induced dyskinesia. These include alpha2 adrenergic receptor antagonists (eg, fipamezole), adenosine A2A receptor antagonists (eg, istradefylline), AMPA receptor antagonists (eg, talampanel), neuronal synchronization modulators (eg, levetiracetam) and agents that interact with serotonergic systems such as 5-hydroxytryptamine (5-HT)1A agonists (eg, sarizotan) and 5-HT2A antagonists (eg, quetiapine). Lastly, we examine a growing number of neuroprotective agents that seek to halt or even reverse disease progression. These include anti-apoptotic kinase inhibitors (eg, CEP-1347), modulators of mitochondrial function (eg, creatine), growth factors (eg, leteprinim), neuroimmunophilins (eg, V-10367), estrogens (eg, MITO-4509), c-synuclein oligomerization inhibitors (eg, PAN-408) and sonic hedgehog ligands.