The genome stability of eukaryotic cells is ensured by proper regulation of histones and their variants. H2A.Z, a conserved and essential histone H2A variant, plays a crucial role in this process by regulating various chromatin-related processes such as gene expression, heterochromatin formation, DNA damage repair, and chromosome segregation. It has two isoforms, H2A.Z1 and H2A.Z2, also known as H2AFZ and H2AFV, respectively, which perform both redundant and nonredundant roles in maintaining genome stability. In this study, we investigated the isoform-specific mitotic functions of H2A.Z in HeLa cells. Our studies revealed that the depletion of H2AFV or H2AFZ did not alter the overall cell cycle profile. However, H2AFV depletion significantly increased the formation of micronuclei, indicating defects in chromosome segregation. Additionally, H2AFV depletion led to the accumulation of DNA damage at various nuclear loci including centromeres. Interestingly, we discovered that H2AFV depletion significantly increased centromeric transcription, which may interfere with proper centromere function. Furthermore, we discovered that a mitotic kinase, Aurora B, binds to both H2AFV and H2AFZ, but preferentially to H2AFV. Inhibition of Aurora B activity by hesperadin disrupted proper centromeric transcription but not significantly centromeric localization of H2A.Z. Collectively, these data demonstrated that the H2A.Z isoforms play distinctive regulatory roles in maintaining proper centromeric transcription and DNA repair, ensuring accurate chromosome segregation.