Vascular calcification is a common complication of chronic kidney disease (CKD). The molecular mechanisms underlying this condition and the efficacy of potential treatments remain unclear. Bioinformatic methods were employed to analyze gene ontology (GO) annotations and pathway enrichments. Subsequently, an analysis of potential therapeutic agents for vascular calcification in CKD was performed. A total of 76 common genes, 181 enriched GO annotations-comprising 153 biological processes, 10 cellular components, and 18 molecular functions-41 KEGG pathways, 13 REACTOME pathways, and 3 BIOCARTA pathways were identified. Five key genes (PSMC5, TNFSF11, TNFRSF11A, TNFRSF12A, and ICAM1) were isolated. Most notably, the top five potential therapeutic drugs-ENAVATUZUMAB, DENOSUMAB, ALICAFORSEN, BI-505, and ENLIMOMAB PEGOL-were identified for vascular calcification in CKD. However, further molecular biological experiments are required to confirm these findings.