We report the synthesis, molecular docking and anticancer properties of the novel compound (E)-1-methyl-9-(3-methylbenzylidene)-6,7,8,9-tetrahydropyrazolo[3,4-d]pyrido[1,2-a]pyrimidin-4(1H)-one (PP562). PP562 was screened against sixteen human cancer cell lines and exhibited excellent antiproliferative activity with IC50 values ranging from 0.016 to 5.667 μM. Experiments were carried out using the target PP562 at a single dose of 1.0 μM against a kinase panel comprising 100 different enzymes. A plausible binding mechanism for PP562 inhibition of DDR2 was determined using molecular dynamic analysis. The effect of PP562 on cell proliferation was also examined in cancer cell models with both high and low expression of the DDR2 gene; PP562 inhibition of high-expressing cells was more prominent than that for low expressing cells. PP562 also exhibits excellent anticancer potency toward the HGC-27 gastric cancer cell line. In addition, PP562 inhibits colony formation, cell migration, and adhesion, induces cell cycle arrest at the G2/M phase, and affects ROS generation and cell apoptosis. After DDR2 gene knockdown, the antitumor effects of PP562 on tumor cells were significantly impaired. These results suggested that PP562 might exert its inhibitory effect on HCG-27 proliferation through the DDR2 target.