Ad5-nCoV (Convidecia) is listed for emergency use against COVID-19 by the World Health Organization (WHO) and has been globally administered to millions of people. It utilizes human adenovirus 5 (Ad5) replication-incompetent vector to deliver the spike (S) protein gene from various SARS-CoV-2 strains. Despite promising clinical data, the molecular mechanism underlying its high immunogenicity and adverse reactions remain incompletely understood. Here, we primarily applied cryo-electron tomography (cryo-ET), fluorescence microscopy and mass spectrometry to analyze the Ad5-nCoV_Wu and Ad5-nCoV_O vaccine-induced S antigens. These antigens encode the unmodified SARS-CoV-2 Wuhan-Hu-1 S gene and the stabilized Omicron S gene, respectively. Our findings highlight the structural integrity, antigenicity, and dense distribution on cell membrane of the vaccine-induced S proteins. Ad5-nCoV_O induced S proteins exhibit improved stability and reduced syncytia formation among inoculated cells. Our work demonstrates that Ad5-nCoV is a prominent platform for antigen induction and cryo-ET can be a useful technique for vaccine characterization and development.