Electrochemical sensors have revolutionized pharmaceutical analysis by providing enhanced speed, selectivity, and cost-effectiveness. This study presents the development of a highly sensitive, non-enzymatic electrochemical sensor for Cyclobenzaprine (CBZ) determination. The sensor features a boron-doped diamond electrode (BDDE) modified with a novel Cobalt Oxide/Nafion-based nanocomposite (Co₃O₄/Nafion), synthesized and optimized for superior performance. The electroactive surface was fabricated by drop-casting a Co₃O₄/Nafion suspension onto the BDDE. Characterization techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR), confirmed the crystallinity, morphology, and functional groups of the nanocomposite. Electrochemical analyses, comprising electrochemical impedance spectroscopy (EIS), square wave voltammetry (SWV), and cyclic voltammetry (CV), demonstrated enhanced charge transfer properties and a one-electron/proton oxidation mechanism for Cyclobenzaprine (CBZ) detection. The sensor demonstrated optimal performance in BR buffer at pH 5.6, with a linear response to CBZ concentrations ranging from 2.49 μg/L to 19.61 μg/L, achieving a LOD of 2.08 μg/L and LOQ of 6.96 μg/L. Practical applicability was established by successfully quantifying CBZ in various biological matrices, including human blood serum (37.8 %), artificial blood serum (35.6 %), artificial sweat (-28.9 %), and urine (-8.9 %), with excellent recovery rates in pharmaceutical formulations (99.75 %) and human blood serum (100.16 %). The sensor exhibited high specificity, unaffected by common interferents such as ions, carbohydrates, and heavy metals. This work introduces, for the first time, a Co₃O₄/Nafion-modified BDDE sensor for CBZ determination, offering rapid, selective, and interference-free analysis with potential applications in therapeutic drug monitoring and pharmaceutical quality control.