Conventional thermoresponsive liposomes have failed to meet cancer targeting potential due to poor safety profile, unpredictable fate, and low therapeutic response in clinical studies. Recently, we reported phase-change nanostructured lipid carriers, termed thermoresponsive lipid nanoparticles (TLNs), for targeting cancer cells under hyperthermia. Herein, we have prepared ternary eutectic mixtures of myristic, stearic, and palmitic acid at a ratio of 2.5:1:1.5 yielded a melting point or solid-liquid phase transition temperature of 41°C. Doxorubicin (DOX)-loaded TLNs were fabricated and optimized using Box-Behnken Design Expert® software and exhibited desirable particle size (191.7±2.88 nm), polydispersity index (0.213±0.025), zeta-potential (-21.2±2.29 mV), spherical shape, high entrapment efficiency (92.24±1.05), and desirable physicochemical stability. In-vitro drug release studies showed hyperthermia-aided abrupt DOX release within 2 h at 41°C and 43°C while sustained drug release pattern for 12 h at 37°C. In-vitro cytotoxicity studies of TLN also exhibited the highest breast cancer (MCF-7) cells killing at hyperthermia (41°C), more than 3-fold compared to 37°C and free DOX solution. A 23-fold higher cell uptake in breast cancer cells further confirmed that ternary eutectic mixture-based DOX-loaded TLNs are an excellent candidate for breast cancer targeting and may be preferred over other nano-carriers due to the feasible preparation and superior stability.