USP10 is a critical deubiquitinating enzyme within the ubiquitin-specific protease family, playing multifaceted roles in cellular physiology and disease pathogenesis. Structurally composed of a G3BP1-interacting motif, a N-terminal domain (mediating most protein interactions), and a catalytic USP domain (residues 415-795, catalytic triad C424-H736-D751), USP10 regulates diverse cellular pathways by stabilizing key proteins through deubiquitination. It exhibits context-dependent functional duality, particularly in cancer: USP10 promotes tumorigenesis in various cancers (e.g., glioblastoma, esophageal, pancreatic, breast cancers) by stabilizing oncoproteins like CCND1, YAP1, HDAC7, and RUNX1, enhancing proliferation, metastasis, and immune evasion. Conversely, it suppresses tumors (e.g., NSCLC, CRC, thyroid cancer) by stabilizing tumor suppressors like p53, PTEN, and Axin1, inhibiting pathways such as Wnt/β-catenin. Beyond oncology, USP10 contributes to neurodegenerative diseases (neuroprotective in PD/ALS, neurotoxic in AD via Tau stabilization), viral immunity (inhibits SARS-CoV-2 infection), inflammatory responses, male reproduction, and metabolic/cardiovascular disorders. Its regulatory mechanisms include phosphorylation (e.g., by AMPK, AKT, ATM) controlling subcellular localization and activity, and ubiquitination via USP13. USP10's therapeutic significance drives inhibitor development (Spautin-1, D1, Wu-5, P22077, Parthenolide), though cross-reactivity within the USP family due to conserved catalytic domains remains a challenge. Novel strategies like PROTACs and engineered ubiquitin variants (UbVs) offer promise for future selective targeting of USP10 dysregulation in diverse diseases. A comprehensive understanding of its structure and context-specific functions is essential for exploiting its full therapeutic potential.