Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a leading cause of mortality and morbidity due to a single infectious agent. Aerosol infection with Mtb can result in a range of responses from elimination, active, incipient, subclinical, and latent Mtb infections (LTBI), depending on the host's immune response and the dose and nature of infecting bacilli. Currently, BCG is the only vaccine approved to prevent TB. Although BCG confers protection against severe forms of childhood TB, its use in adults and those with comorbid conditions, such as HIV infection, is questionable. Novel vaccines, including recombinant BCG (rBCG), were developed to improve BCG's efficacy and use as an alternative to BCG in a vulnerable population. The first-generation rBCG vaccines had different Mtb antigens and were tested as a prime, prime-boost, or immunotherapeutic intervention. The novel vaccines target one or more of the following requirements, namely prevention of infection (POI), prevention of disease (POD), prevention of recurrence (POR), and therapeutic vaccines to treat a TB disease. Several vaccine candidates currently in development are classified into four primary categories: live attenuated whole-cell vaccine, inactivated whole-cell vaccine, adjuvanted protein subunit vaccine, and viral-vectored vaccine. Each vaccine's immunogenicity, safety, and efficacy are tested in preclinical animal models and further validated through various phases of clinical trials. This chapter summarizes the various TB vaccine candidates under different clinical trial stages and promises better protection against TB.