OBJECTIVE:Down-regulation of bronchial epithelial E-cadherin is an important of feature of severe asthma, including steroid-insensitive asthma. Yet, the mechanisms involved in E-cadherin disruption are not fully understood. This study was aimed to investigate the role of glucose transporter 1 (GLUT1) in dysregulation of E-cadherin in toluene diisocyanate (TDI)-induced steroid-insensitive asthma.
METHODS:A murine model of steroid-insensitive asthma was established by TDI sensitization and aerosol inhalation. Selective GLUT1 antagonists WZB117 and BAY876 were given to BALB/c mice after airway challenge. In vitro, primary human bronchial epithelial cells (HBECs) cultured in an airway-liquid interface (ALI) were exposed to TDI.
RESULTS:TDI exposure markedly up-regulated GLUT1 in murine lungs and HBECs. Pharmacological inhibition of GLUT1 with BAY876 decreased airway hyperresponsiveness, neutrophil and eosinophil accumulation, as well as type 2 inflammation in vivo. Besides, the TDI-induced down-regulated expression of full-length E-cadherin was also partly recovered, accompanied by inhibited secretion of soluble E-cadherin (sE-cadherin). WZB117 also exhibited mild therapeutic effects, though not significant. In vitro, treatment with GLUT1 inhibitor relieved the TDI-induced disruption of E-cadherin in HBECs.
CONCLUSIONS:Taken together, our data demonstrated that GLUT1 modulates bronchial epithelial E-cadherin dysfunction production in TDI-induced steroid-insensitive asthma.