Ferroptosis and inflammation are central to the pathophysiology of hyperhomocysteinemia (HHcy)-associated neurological disorders. Tectorigenin, a natural flavonoid aglycone extracted from numerous plants, possesses antioxidant, anti-inflammatory, and neuroprotective properties. This study aimed to investigate whether tectorigenin mitigates elevated homocysteine (Hcy)-induced toxicity in BV-2 microglial cells, focusing on its effects on inflammation and ferroptosis. Cell viability, lactate dehydrogenase (LDH) release, and proliferation assays were employed to evaluate cell injury. Inflammatory cytokines levels were determined by ELISA. Ferroptosis markers, including reactive oxygen species (ROS), lipid ROS, malondialdehyde (MDA), 4-hydroxy-nonenal (4-HNE), mitochondrial membrane potential (MMP), ATP, Fe2 + content, antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT]) activities were evaluated. mRNA and protein expressions were analyzed by qRT-PCR and western blotting, respectively. Our findings revealed that tectorigenin pretreatment significantly alleviated Hcy-induced cell injury and inflammatory response in BV-2 microglial cells. Furthermore, tectorigenin pretreatment reduced lipid peroxidation, enhanced antioxidant capacity, and alleviated ferroptotic cell death in Hcy-treated cells. Importantly, ferroptosis inhibitor Fer-1 also alleviated Hcy-induced cell injury and inflammation. Mechanistically, tectorigenin pretreatment activated the SIRT1/SLC7A11 pathway, and silencing SIRT1 reversed its protective effects. Collectively, these results indicate that tectorigenin attenuates Hcy-induced microglial injury by inhibiting inflammation and ferroptosis through the activation of the SIRT1/SLC7A11 pathway.