The effects of newly synthesized pyridothiazepines MM 4 (1-[N-[2-(3,4-dimethoxy-phenyl)ethyl]-N-methylaminoacetyl]-1,2,3,4 -tetrahydro-pyrido[2,3-b][1,4]thiazepine fumarate), MM 6 (1-[N-[2-(3,4-dimethoxyphenyl)-ethyl]-N-methylaminopropionyl]-1,2, 3,4-tetrahydro-pyrido[2,3-b][1,4]thiazepine fumarate) and the novel pyridothiazines MM 10 (2,3-dihydro-1-[N-[2-(3,4-dimethoxyphenyl)ethyl]-N-methylaminoacetyl+ ++]-1H-pyrido[2,3-b][1,4]thiazine fumarate) and MM 11 (2,3-dihydro-1-[N-[2-(3,4-dimethoxy-phenyl)ethyl]-N-methylaminopropio nyl]-1H-pyrido[2,3-b][1,4]thiazine fumarate) on the contractility of isolated papillary muscles and aortic preparations of guinea pigs were studied using isometric contraction force measurements. The EC50 values for the negative inotropic effect were 27 micromol/l (MM 4), 19 micromol/l (MM 6), 32 micromol/l (MM 10) and 24 micromol/l (MM 11). In K+-precontracted aortic rings ([K+]o 60 mmol/l), the compounds induced relaxation with EC50 values of 27 micromol/l (MM 4), 24 micromol/l (MM 6), 84 micromol/l (MM 10) and 68 micromol/l (MM 11). Pyridothiazepines as well as pyridothiazines (100 micromol/l) were able to depress norepinephrine bitartrate (NE 10 micromol/l)-induced contraction of aortic rings in a calcium-free solution. It was concluded that the investigated compounds exert calcium antagonistic properties in both cardiac and smooth muscle. This antagonistic effect might be due to the inhibition of transmembrane calcium influx and/or intracellular calcium release.