Purpose:Sirtuins (SIRTs) play a critical role in redox and metabolic regulation of the myocardium; however, the cardioprotective potential of SIRT5 in terms of infarct size (IS) reduction is still elusive. Herein, we employed the newly synthesized SIRT5-specific agonist, MC3215, developed by our group, to explore for the first time the pharmacological activation of SIRT5 as a target for cardioprotection.
Methods and Results:In in vitro screening experiments, SIRT1 and SIRT5 agonists, namely, MC2606 and MC3215, at 1-20 μΜ were added to cardiomyoblasts (H9c2) and human endothelial cells (EA.hy-926) during 24 h hypoxia/2 h reoxygenation (H/R). SIRT1 and SIRT5 agonists mitigated H/R injury. Male C57BL/6J mice underwent 30 min ischemia (I) followed by 2 h or 24 h reperfusion (R). Mice received vehicle, the SIRT1 or SIRT5 agonists at 20 and 30 mg/kg at the 20th min of ischemia, and IS was quantified via triphenyl-tetrazolium chloride staining (n=5-7/group). MC3215-mediated SIRT5 activation reduced IS at 24 h R at 20mg/kg compared to controls (25.18±2.7% vs 38.80±4.7%). MC3215 treatment resulted in reduced protein malonylation in all experimental settings. Targeted mass-spectrometry-based metabolomics in the ischemic heart at the 10th min of R suggested increased fatty acid oxidation, as indicated by increased N3-Trimethyllysine and D-pantothenate. Concomitantly, molecular analysis indicated that the SIRT5 agonist activated AMPKα and Reperfusion Injury Salvage Kinase (RISK) pathway. Additionally, at 3 h reperfusion, MC3215 led to increased mitofusin 2 without altering apoptosis, paving towards improved mitochondrial dynamics. Co-administration of SIRT5 inhibitor, TW-37, abrogated MC3215-mediated cardioprotection.
Conclusion:SIRT5 pharmacological agonism emerges as a novel cardioprotective target, leading to RISK pathway activation and mitochondria-related metabolic effects, converging at salvaging ischemic myocardium from I/R injury.