A deoxycytidine analog is a potential agent for the treatment of several cancers, which includes poorly prognostic pancreatic cancer. We previously developed deoxycytidine analog DFP-10917, and long-term/low-dose infusions of this analog has produced antitumor effects in leukemia cancer- and ovarian cancer-xenograft models. DFP-10917 is now undergoing clinical Phase III study in the United States for the treatment of patients with relapsed or refractory acute myeloid leukemia. PEG-drug conjugation has become a promising technique to improve the pharmacokinetic and pharmacodynamic properties of anti-cancer drugs. In the present study, we synthesized a novel PEG-drug conjugate of DFP-10917, referred to hereafter as DFP-14927, using a 4-armed CTPEG system to endow the DFP-10917 drug with favorable long-circulating properties that maximize its utility and antitumor efficacy. Intravenous injection of the synthesized DFP-14927 returned encouraging antitumor effects in a Panc-1 human pancreatic tumor- and a BxPC-3 human pancreatic tumor-xenograft models. These effects were comparable to that of free DFP-10917 as well as to that of gemcitabine, which is considered a standard in the treatment of pancreatic cancer. In vitro studies revealed that DFP-14927 inhibits cell division on human pancreatic cancer cell lines via arrest of the G2/M phase in the cell cycle, which is consistent with the effects of free DFP-10917. Intravenous administration of the newly synthesized DFP-14927 has induced G2/M arrest in human pancreatic tumor-xenograft murine models, which represents an improvement in the pharmacokinetics of DFP-10917. DFP-14927 could be an alternative for patients who cannot accept prolonged or continuous infusions of DFP-10917.