NMDA receptors play a role in the aetiology of depression with non-competitive NMDA receptor antagonists such as amantadine showing synergy with conventional antidepressants. To advance a neurochemical rational for these findings, we have studied the effects of administration of amantadine and budipine with the antidepressants reboxetine (REB), paroxetine (PAROX) and clomipramine (CLOM) on extracellular DA in rats using microdialysis. Acutely, amantadine (40 mg/kg) or budipine (10 mg/kg) did not significantly alter extracellular DA. REB (10 mg/kg), PAROX (10 mg/kg) both increased cortical DA while CLOM (10 mg/kg) produced a decrease. When amantadine or budipine was administered 30 min before the antidepressants, DA increases were markedly greater than following the antidepressants alone. Chronically drug effects were studied at 4, 7, 14 and 21 days. Amantadine and budipine did not significantly alter extracellular DA at any time. The three antidepressants elicited a gradual increase in DA which became significant after 7 days and tended to plateau thereafter. When amantadine (20 mg/kg) or budipine (5 mg/kg) was co-administered with the three antidepressants, two differences were seen compared with the antidepressants alone. Firstly, the time required for significant increases in cortical DA was reduced with elevated levels now being observed by 4 days. Secondly, the increase in extracellular DA was greater in these rats throughout the experiment. If increased extracellular DA represents a step in the mechanism of action of antidepressants, these data suggest that combined treatment with clinically tolerated NMDA antagonists such as amantadine could reduce the delay in therapeutic onset of antidepressants and possibly enhance their efficacy.