Acute stress has been shown to modify hypothalamus-pituitary-gonadal (HPG) axis activity. Corticotropin-releasing hormone (CRH), the principal regulator of the hypothalamus-pituitary-adrenal (HPA) axis, has been implicated as a mediator of stress-induced effects on the reproductive axis. The role of the specific CRH receptor subtypes in this response is not completely understood. In the current study, we investigated the role of the CRH-R(1) receptor on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL), progesterone (P) and corticosterone (CT) secretion in stress-induced responses under the influence of estrogen (E(2)). Estrogen-primed ovariectomized rats (estradiol cypionate, 10 μg sc) received an i.v. administration of antalarmin (0.1 or 1mg/kg), a selective CRH-R(1) antagonist, or vehicle before restraint stress for 40 min. Seven blood samples were collected from two experimental groups (one from 10:00 h to 14:00 h and the other from 10:00 h to 18:00 h). An increase of plasma LH induced by restraint acute-stress was followed by alteration of the secretion pattern in the estrogen-induced afternoon surge. In a similar manner, we observed a suppression of the afternoon surge in plasma FSH, a delay of E(2)-induced PRL secretion, and an increase in plasma P and CT. Antalarmin attenuated stress-induce LH increase, decreased CT and P secretion and blocked the stress effects on PRL secretion. These findings suggest that CRH-R(1) mediates, at least in part, the restraint stress effects on the HPA, PRL, and reproductive axes.