Chronic cholangiopathies have limited therapeutic options and represent an important indication for liver transplantation. The nuclear farnesoid X receptor (FXR) and the membrane G protein-coupled receptor, TGR5, regulate bile acid (BA) homeostasis and inflammation. Therefore, we hypothesized that activation of FXR and/or TGR5 could ameliorate liver injury in
Mdr2
−/− (
Abcb4
−/−) mice, a model of chronic cholangiopathy. Hepatic inflammation, fibrosis, as well as bile secretion and key genes of BA homeostasis were addressed in
Mdr2
−/− mice fed either a chow diet or a diet supplemented with the FXR agonist, INT-747, the TGR5 agonist, INT-777, or the dual FXR/TGR5 agonist, INT-767 (0.03% w/w). Only the dual FXR/TGR5 agonist, INT-767, significantly improved serum liver enzymes, hepatic inflammation, and biliary fibrosis in
Mdr2
−/− mice, whereas INT-747 and INT-777 had no hepatoprotective effects. In line with this, INT-767 significantly induced bile flow and biliary HCO
Symbol
output, as well as gene expression of carbonic anhydrase 14, an important enzyme able to enhance HCO
Symbol
transport, in an Fxr-dependent manner. In addition, INT-767 dramatically reduced bile acid synthesis via the induction of ileal
Fgf15
and hepatic
Shp
gene expression, thus resulting in significantly reduced biliary bile acid output in
Mdr2
−/− mice.
Conclusion:
This study shows that FXR activation improves liver injury in a mouse model of chronic cholangiopathy by reduction of biliary BA output and promotion of HCO
Symbol
-rich bile secretion. (Hepatology 2011;54:1303–1312)