The focus point of this current work is to evaluate the anticancer and growth inhibitory efficacy of compounds 5α,8α-epidioxy-24ᶓ-methylcholesta-6,22-dien-3β-ol (LT1), and Ergosta-5,7,22-trien-3β-ol (LT2) of Lentinus tuberregium (Fr.) on three cell lines such as A673 (Rhabdomyosarcoma), MCF7 (breast cancer), and HCT116 (colorectal carcinoma) by MTT assay. LT1 and LT2 exerted maximal growth inhibition in the order as A673 > HCT116 > MCF7. Comparatively, LT1 was more potent in causing cell growth inhibition than LT2 in the A673 cancer cell line. Based on the MTT assay, A673 cells alone proceeded further as a model to evaluate the anticancer potential of LT1 and LT2 at three different semilogarithmic concentrations (3, 10, 30 μM). The cells exposed with compounds at 24 and 48 h were analyzed by flow cytometry. Exposure of LT1 at 3 and 10 μM concentrations for 24 h caused a G2-M arrest. At 10 μM concentration, cells also accumulated in the G0-G1 phase, indicating a G1 block. These effects were only transient as prolonged exposure (48 h) of LT1 treatment brought back the cell population to normalcy. Both the compounds only at 30 μM concentration have the potential to induce a hypodiploid peak (sub G0), indicating an induction of apoptosis which was explicit by nuclear condensation and fragmentation of nuclei in cells. The dose-dependent and compound-specific apoptotic induction was further confirmed by caspase activity higher in LT1 than LT2. The results highlight the significant growth inhibitory activity and anticancer potential of LT1 and LT2 which are recommended for further in-depth analysis.