BACKGROUND:Cell differentiation agent II (CDA-II) exhibits potent anti-proliferative and apoptosis-inducing properties against a variety of cancer cells. However, its mechanism of action in chronic myeloid leukemia (CML) remains unclear.
METHODS:Cell counting Kit 8 (CCK-8) and flow cytometry were used to investigate the effects of CDA-II on the biological characteristics of K562 cells. Gene (mRNA and lncRNA) expression profiles were analyzed by bioinformatics to screen differentially expressed genes and to perform enrichment analysis. The Pearson correlation coefficients of lncRNAs and mRNAs were calculated using gene expression values, and a lncRNA/mRNA co-expression network was constructed. The MCODE and cytoHubba plugins were used to analyze the co-expression network.
RESULTS:The Results, derived from CCK-8 and flow cytometry, indicated that CDA-II exerts dual effects on K562 cells: it inhibits their proliferation and induces apoptosis. From bioinformatics analysis, we identified 316 mRNAs and 32 lncRNAs. These mRNAs were predominantly related to the meiotic cell cycle, DNA methylation, transporter complex and peptidase regulator activity, complement and coagulation cascades, protein digestion and absorption, and cell adhesion molecule signaling pathways. The co-expression network comprised of 163 lncRNA/mRNA interaction pairs. Notably, our analysis results implicated clustered histone gene families and five lncRNAs in the biological effects of CDA-II on K562 cells.
CONCLUSION:This study highlights the hub gene and lncRNA/mRNA co-expression network as crucial elements in the context of CDA-II treatment of CML. This insight not only enriches our understanding of CDA-II's mechanism of action but also might provide valuable clues for subsequent experimental studies of CDA-II, and potentially contribute to the discovery of new therapeutic targets for CML.