BACKGROUND:Septic acute lung injury (Septic-ALI, SA) is a severe complication of sepsis with limited clinical treatment options. Ethyl Caffeate (EC) is a phenolic compound isolated from Ilex latifolia Thunb (I. latifolia) of the Aquifoliaceae family.
PURPOSE:This study aimed to investigate the potential mechanisms of EC in treating SA by integrating network pharmacology and transcriptomics.
METHODS:We used network pharmacology to predict the potential pathways and targets of EC and validated these predictions using the GEO database, molecular docking and MDS. Subsequently, LPS-induced inflammation models in RAW cells and a mouse model of SA were established to evaluate the therapeutic effects of EC. Cell transcriptomic sequencing, along with ELISA, qRT-PCR, and Western blot analyses, were performed on both cellular and animal models to validate the key pathways and targets.
RESULTS:EC targeted TNF-α and MMP9, significantly alleviating LPS-induced SA through the TNF-α/NF-κB/MMP9 axis. Specifically, network pharmacology and molecular docking suggested that EC may target TNF, MMP9, EGFR, PRKACA, and MAPK3. Transcriptomic analyses, MDS and in vitro and in vivo experiments showed that EC primarily reduced the expression of p-p65 and p-IκBα in the TNF pathway by inhibiting TNF-α, thereby downregulating the expression of downstream effector molecules MMP9 and MMP14, and improving lung tissue damage, cell apoptosis, and inflammation levels in mice.
CONCLUSION:This study was the first to integrate network pharmacology and transcriptomic results, revealing the mechanism by which EC ameliorated SA through the TNF-α/NF-κB/MMP9 axis. Furthermore, experimental validation identified TNF-α and MMP9 as two core targets of EC, providing a valuable reference for the clinical treatment of SA.