The new chemical entity CGP 70726, a very poorly water-soluble HIV-1 protease inhibitor, was incorporated into pH-sensitive nanoparticles and microparticles made of the poly(methacrylic acid-co-ethylacrylate) copolymer Eudragit((R)) L100-55. The particles were characterized in terms of morphology, size distribution, drug loading, production yield and dispersion state of the drug inside the polymeric matrices. Aqueous dispersions of the particles were administered orally to Beagle dogs against a suspension of free drug (control formulation) all at a dose of 100 mg/kg. Oral administration was conducted in the absence and presence of food. Plasma concentrations and pharmacokinetic parameters were determined within 8 h post-dose. While no measurable absorption of the drug resulted after administration of the control formulation, substantial systemic exposure to the compound was obtained with both kinds of pH-sensitive formulations. The selective release of CGP 70726 in a highly dispersed/amorphous state and creation of high concentrations close to its absorption site was thought to account for this positive result. The largest areas under the plasma concentration-time curve (AUC) were obtained in the fasted state, with slightly better performance of the microparticles over the nanoparticles, in both nutritional states (7.8+/-1.5 versus 5.8+/-0. 8 micromol.h/l in the fasted state; 4.4+/-1.4 versus 2.00+/-0.5 micromol.h/l in the fed state). With these results, the potential of pH-sensitive particles for the oral delivery of HIV-1 protease inhibitors with low water solubility was confirmed.