Membranes─cells' essential scaffolds─are valid molecular targets for substances with an antimicrobial effect. While certain substances, such as octenidine, have been developed to target membranes for antimicrobial purposes, the recently reported molecule, fabimycin (F2B)─a novel agent targeting drug-resistant Gram-negative bacteria─has not received adequate attention regarding its activity on membranes in the literature. The following study aims to investigate the effects of F2B on different bacterial membrane models, including simple planar bilayers and more complex bilayer systems that mimic the Escherichia coli shell equipped with double inner and outer bilayers. Our results show that F2B exhibited more pronounced interactions with bacterial membrane systems compared to the control PC system. Furthermore, we observed significant changes in local membrane property homeostasis in both the inner and outer membrane models, specifically in the case of lateral diffusion, membrane thickness, and membrane resilience (compressibility, tilt). Finally, our results showed that the effect of F2B differed in a complex system and a single membrane system. Our study provides new insights into the multifaceted activity of F2B, demonstrating its potential to disrupt bacterial membrane homeostasis, indicating that its activity extends the currently known mechanism of FabI enzyme inhibition. This disruption, coupled with the ability of F2B to penetrate the outer membrane layers, sheds new light on the behavior of this antimicrobial molecule. This highlights the importance of the interaction with the membrane, crucial in combating bacterial infections, particularly those caused by drug-resistant strains.