Flufenamic acid (FFA) is an anti-inflammatory drug that affects multiple targets and is a widely used research tool in ion channel studies. This pharmacological compound has a low level of selectivity for the transient receptor potential (TRP) channel superfamily, blocking calcium-activated nonselective cation current (ICAN) as well as afterdepolarizations (ADP) induced by it. A number of studies have demonstrated that FFA exerts an anti-epileptic effect in vitro, although the precise mechanism of this effect is not yet identified. The present study used whole-cell patch-clamp recordings and demonstrated that FFA (25 μM) can abolish the generation of seizure-like events (SLE) in entorhinal cortex slices perfused with a 4-aminopyridine-containing solution, depending on the time of application. FFA decreased the temporal summation of synaptic potentials at the onset of SLEs. However, as the epileptiform activity evolved and the SLE onset phase became more abrupt, the blocking effect of FFA diminished. FFA effectively abolished TRP channel-mediated slow ADPs, exerted a weak blockade and slowed the kinetics of GABAa receptor-mediated currents, and did not affect NMDA receptor-mediated evoked currents induced by extracellular stimulation. Although FFA did not directly inhibit NMDA receptor-mediated evoked currents, it decreased the summation of NMDA receptor-mediated potentials in a manner comparable to its effect on the initiation phase of SLE. This suggests that ICAN blockade may be responsible for this effect. Furthermore, our results showed that the selective blocker of melastatin TRP channels (TRPM4) 9-phenanthrol effectively abolished epileptiform activity in a manner analogous to FFA. In contrast, ML-204, the blocker of canonical TRP channels (TRPC), had no discernible effect on this phenomenon. In conclusion, the study demonstrate that FFA abolishes epileptiform activity in the entorhinal cortex by blocking TRPM4 channels and, consequently, decreasing the effectiveness of temporal summation of glutamatergic potentials.