Breast cancer (BC) with high HER2 expression has higher recurrence rate and worse prognosis, and its immunotherapy is promising. Based on the high expression of HER2, develop Chimeric Antigen Receptor T-cell (CAR-T) and PDL-1 immunotherapy, and study the molecular pathways of related immune cells and recurrence. HER2-CAR-T cells were constructed using retroviruses, and their specific recognition and immune effects on HER2+ BC cells were verified by in vivo and in vitro experiments. PDL-1 was used as adjuvant immunotherapy, knocking down PDL-1 in tumor cells or dendritic cells, or depleted macrophages to study immune pathways. The negative regulation of HER2 by cbl was determined by IP, ubiquitination experiments, and segmented plasmids, elucidating the molecular mechanism of HER2+ BC recurrence after immunotherapy. HER2-CAR-T specifically recognizes HER2-positive tumor cells and inhibits tumor growth in vivo and in vitro, and anti-PDL1 treatment enhances the therapeutic effect of HER2-CAR-T on tumors. HER2-CART therapy eradicated solid tumors after PDL1 knockdown in dendritic cells. Immunotherapy of relapsed tumors lost HER2 expression by upregulating cbl. HER2-CAR-T shows specific recognition of HER2+ cells and can mediate immune response therapy with the cooperation of PDL-1.