Photobiomodulation therapy (PBMT) is a rapidly advancing approach for restoring damaged tissues, particularly in skin and mucosal wounds. While its application is promising, the role of mature adipocytes in regenerating mesenchymal tissues after PBMT remains largely unexplored. This study demonstrates that PBMT applied to skin wounds significantly reduces the number and size of mature adipocytes. Additionally, PBMT modulates the upregulation of peroxisome proliferator-activated receptor γ (PPARγ), increasing the gene expression of fatty acid binding protein 4 (Fabp4) and perilipin 1, which are linked to enhanced lipolysis. The molecular activation of neural/glial antigen 2 (NG2) indicates the recruitment of progenitor cells following mature adipocytes lipolysis. In vitro, PBMT improved dermal skin cell proliferation, migration, inflammatory regulation, and differentiation capacities. These findings reveal a novel mechanistic pathway for skin regeneration, emphasizing the therapeutic potential of PBMT in modulating dermal fat tissue to facilitate wound healing. Collectively, this emerging knowledge provides valuable insights into managing dermal fat tissue to support wound healing.