The rational design and exploitation of cost-effective and robust catalysts for peroxymonosulfate (PMS) activation is of great significance. Herein, MnO/MnS nanoparticles encapsulated in Nitrogen-doped porous carbon skeleton (abbreviated as MnO/MnS@NPC) were first constructed through an easy two-step of impregnation along with subsequent pyrolysis technique and utilized to activate PMS for the elimination and mineralization of tetracycline (TC). Benefiting from the strong coupling of transition metal Mn with carbon-based material, the co-doping of heteroatom N and S, the enhanced electrical conductivity, and the hierarchical porous microarchitecture, the obtained MnO/MnS@NPC composite has been expected to present superior PMS activation capacity and pollutant elimination efficiency to its benchmark NPC and MnO@NPC, with 92.5 % degradation rate of TC within 60 min. Comprehensive investigations, involving quenching experiments, electron paramagnetic resonance (EPR) studies, in situ Raman identification, and electrochemical tests, jointly indicated that the non-radical pathways including electron-transfer, single oxygen (1O2) and the high-valent Mn-oxo species, especially the electron transfer process (ETP) from TC molecule to the metastable MnO/MnS@NPC-PMS* complex were dominantly responsible for PMS activation and further decomposition of TC, which greatly enhanced the selective removal of TC and the anti-interference capacity of the PMS system. Furthermore, the possible TC degradation routes were predicted by Density Functional Theory (DFT) calculation and the toxicity of degradation intermediates were also analyzed by toxicity assessment software. In addition, the heterogeneous catalyst displayed outstanding stability and reusability owing to the shield effect of NPC framework to MnO/MnS nanoparticles. Overall, this work proposed a prospective strategy for rationally designing and exploring heterogeneous PMS activator towards wastewater purification.