Objective: To explore the mechanism of osteoclast stimulatory transmembrane protein (OC-STAMP) overexpression on epithelial-mesenchymal transition (EMT) . Methods: In April 2021, mice alveolar type Ⅱ epithelial cells MLE-12 were divided into five groups: overexpression control group (NC group), Ocstamp overexpression group (over-Ocstamp group), Fasudil intervention group (over-Ocstamp+Fasudil group), silence control group (si-NC group), Ocstamp silence group (si-Ocstamp group). The protein expressions of OC-STAMP, epithelial marker protein-E-cadherin (E-cad), interstitial marker protein-α-smooth muscle actin (α-SMA), Ras homolog gene family member A (RhoA), Rho GDP dissociation inhibitor α (Rho GDIα), Rho-associated protein kinase (ROCK), phosphate myosin phosphatase (p-MYPT) were examined by Western blotting and Immunocytochemical staining. The filamentous actin (F-actin) was detected by Phalloidin method. t test was used to compare the relative expression of each protein between the two groups. Results: Western blotting and Immunocytochemical staining showed that compared with the NC group, the expression level of E-cad was down-regulated, while the expression levels of α-SMA, Rho GDIα, RhoA, ROCK, p-MYPT were increased, and F-actin expression was enhanced in the over-Ocstamp group. The differences were statistically significant (P<0.05). There were no significant differences in E-cad and α-SMA protein expression in si-Ocstamp group compared with si-NC group (P>0.05). Compared with over-Ocstamp group, the expression level of E-cad protein in over-Ocstamp+Fasudil group was up-regulated, the expression levels of α-SMA, Rho GDIα, RhoA, ROCK and p-MYPT protein were decreased, and F-actin expression was weakened, with statistical significance (P<0.05) . Conclusion: OC-STAMP overexpression in alveolar type Ⅱ epithelial cells may induce actin cytoskeleton remodeling through activation of Rho GDIα/RhoA/ROCK signaling pathway, thus promoting EMT.