Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage degradation, osteophyte formation, and joint dysfunction, significantly impairing the quality of life in the elderly population. Recently, RNA modifications, as a dynamic and reversible epigenetic modification, have emerged as critical players in the onset and progression of OA. This review systematically summarizes the major types of RNA modifications involved in OA, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), and 7-methylguanosine (m7G), and explores their roles in regulating chondrocyte autophagy, inflammatory responses, and key signaling pathways. with a primary focus on RNA methylation. Special emphasis is placed on the dynamic regulatory functions of key methyltransferases (e.g., METTL3, FTO, WTAP) and their potential contributions to OA pathogenesis. Furthermore, we address current research hotspots and controversies in the field, proposing future research directions, such as leveraging single-cell sequencing to decipher dynamic RNA modification changes during OA progression and uncovering the cooperative networks among various RNA modifications. Advancing our understanding of the biological roles and mechanisms of RNA modifications holds promise for innovative strategies in the early diagnosis, disease stratification, and targeted therapy of OA.