Plants are constantly subjected to various abiotic stresses (drought, salinity, heavy metals and low temperature) throughout their life cycle, which significantly hinder their growth and productivity. Key abiotic stresses include drought, salinity, heavy metals, and extreme temperatures. In response, plants modulate glycine betaine (GB) levels, a vital compatible solute that influences growth and stress tolerance by interacting with phytohormones and cellular signaling pathways. Not all species can synthesize endogenous GB; however, some non-GB accumulating plants have been genetically modified to enhance GB production through the overexpression of synthesis genes such as choline oxidase, choline monooxygenase, and betaine aldehyde dehydrogenase. Exogenous GB treatment can mitigate stress effects by improving nutritional balance, reducing reactive oxygen species (ROS), minimizing membrane damage, and alleviating photoinhibition. Nonetheless, the specificity of GB application, transport, and accumulation across species, as well as its interaction with phytohormones in stress alleviation, remains uncertain. This review focuses on GB's role as an antioxidant, osmo-regulator, and nitrogen source, evaluating the physiological, biochemical, and molecular mechanisms by which GB mitigates abiotic stresses, aiming to develop GB-based strategies for enhancing plant stress resilience.