Hepatic deletion of methionine adenosyltransferase-1a (Mat1a) in mice reduces S-adenosylmethionine (SAMe), a key methyl donor essential for many biological processes, which promotes the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Hyperglycemia and reduced MAT1A expression, along with low SAMe levels, are common in MASLD patients. This study explores how Mat1a-knockout (KO) hepatocytes respond to prolonged high glucose conditions, focusing on glucose metabolism and lipid accumulation. Hepatocytes from Mat1a-KO mice were incubated in high glucose conditions overnight, allowing for analysis of key metabolic intermediates and gene expression related to glycolysis, gluconeogenesis, glyceroneogenesis, phospholipid synthesis, and very low-density lipoprotein (VLDL) secretion. SAMe deficiency in Mat1a-KO hepatocytes led to reduced protein methyltransferase-1 activity, resulting in increased expression of glycolytic enzymes (glucokinase, phosphofructokinase, and pyruvate kinase) and decreased expression of gluconeogenic enzymes (phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase). These alterations led to a reduction in dihydroxyacetone phosphate (DHAP), which subsequently inhibited mammalian target of rapamycine complex 1 (mTORC1) activity. This inhibition resulted in decreased phosphatidylcholine synthesis via the CDP-choline pathway and impaired VLDL secretion, ultimately causing lipid accumulation. Thus, under high glucose conditions, SAMe deficiency in hepatocytes depletes DHAP, inhibits mTORC1 activity, and promotes lipid buildup.