BACKGROUNDProlonged exposure to excessive arsenic (As) and its compounds can cause damage to multiple systems, including respiratory, cardiovascular, immune, nervous, and endocrine systems. Manifestations include changes in skin pigmentation, excessive keratosis on palms and soles, gastrointestinal symptoms, and anemia. The liver as an important detoxification organ of the body, is a significant target organ for arsenic toxicity, and liver diseases are common. So far, the molecular mechanism has not been fully elucidated. Evidence suggests that taurodeoxycholic acid (TUDCA) has a protective role in arsenic-induced liver injury. This study aims to reveal potential target genes at the transcriptional level following TUDCA intervention, providing insights for the intervention of arsenic-induced liver injury.METHODSThe TUDCA intervention model of arsenic liver injury in C57BL/6 N mice was established. The experiment was divided into two phases and lasted for 24 weeks. The phase I trial (12 weeks) was divided into control, low, middle and high groups according to the dose of As. The phaseⅡtrial (12 weeks) was administered in combination with 10 mg/L sodium arsenite (the first stage high arsenic group) and TUDCA, so subsequent groups was named with H indicating high arsenic. Divide into four groups: control group(C), TUDCA solvent control group(H-Vehicle), TUDCA combined with As group(H-TUDCA), arsenic group (As). As was ingested through free water and TUDCA was administered to mice by gavage at a dose of 0.1 mL/10 g.b.w (100 mg/kg) once a day for 12 weeks. The differential expression gene (DEG) profile was obtained from the second batch of mouse liver tissues by RNA sequencing technology. Comparative transcriptomic analysis methods were used to identify co-varying DEGs between arsenic induction and TUDCA intervention, along with their associated pathways. QRT-PCR was utilized for validation.RESULTSTranscriptome results showed that 487 DEGs were identified after arsenic induction. TUDCA intervention identified 231 DEGs (p-values < 0.05 and | log2(fold change) | > 1). The comparison of "AS vs C" and "H_TUDCA vs AS" identified 65 covariant DEGs, and further screened the TUDCA pathways and related genes among these genes,six pathways and 11 genes (Ccl21a, Ccr7, Mdm2, Slc2a4, Akr1b7, Pnpla3, Dusp8, Hspa1a, Cyp7a1, Cybrd1, Trpm6) were obtained. Next, we screened for covariant DEGs among the top 50 potential hub genes in arsenic-induced DEGS, and obtained 7 (Hbb-bs, Hspa1a, Mdm2, Slc2a4, Ptk6, Egr1, and Dusp8). Finally, the intersection of Hub gene and pathway gene was selected as the target genes Dusp8, Hspa1a, Mdm2 and Slc2a4. The sequencing results showed that the mRNA expressions of Dusp8, Hspa1a and Mdm2 were significantly increased after arsenic induction, while the expression of Slc2a4 was significantly decreased (P<0.05). Conversely, TUDCA intervention reversed these DEGs changes, consistent with QRT-PCR validation results.CONCLUSIONThis study contributes to understanding the potential health effects of arsenic-induced liver injury, identifying new potential targets, and providing references for TUDCA intervention.