Leukemia inhibitory factor (LIF) enhances in vitro murine preimplantation development in a time- and dose-dependent fashion. Knockout experiments have demonstrated that endometrial LIF is essential for in vivo murine implantation. We assessed the impact of LIF and an anti-LIF polyclonal antibody (pab) on in vivo development and developed a novel and successful nonsurgical method of embryo transfer for this species, a transcervical blastocyst transfer technique. The objectives of this study were to evaluate the effects of LIF and the anti-LIF pab on 1) implantation, resorption, pregnancy, and viability rates and 2) the overall structural and skeletal development. Two-cell embryos were recovered from superovulated mated donors, cultured to the expanded blastocyst stage, and transferred transcervically into pseudopregnant recipients. Exposure to 5000 U/ml LIF resulted in significant increases in implantation, pregnancy, and viability rates compared with controls. A similar dose of pab produced overall inhibitory effects with a significant decrease in implantation rate. Paradoxically, lower pab doses resulted in significantly increased viability rates. Exposure to LIF had no effect on fetoplacental development. However, pab treatments had variable but significant negative effects on placental length, ossification of the exoccipital bone, and vertebral space width compared with controls. Exposure of murine blastocysts to LIF at the time of transcervical transfer resulted in pronounced positive effects on implantation and pregnancy rates without affecting fetal development. A similar pab dose dramatically reduced implantation and pregnancy rates; at high and low doses, pab produced deleterious effects on placental and skeletal development.