BACKGROUND:Tanreqing injection (TRQ) has been employed in clinical practice as a treatment for dengue fever (DF). Nevertheless, the precise pharmacological mechanism underlying its efficacy remains elusive.
METHOD:Network pharmacology, molecular docking, transcriptome sequencing, and experimental evaluation were employed to analyze and study the inhibitory potential of TRQ against dengue virus (DENV).
RESULT:We found that TRQ inhibited the replication of DENV in human umbilical vein endothelial cells, Huh-7 cells, and Hep3B cells. In addition, TRQ prolonged the survival duration of AG129 mice infected with DF, decreased the viral load in serum and organs, and alleviated organ damage. Subsequently, ultra-high-performance liquid chromatography-tandem mass spectrometry analysis of TRQ was performed to identify 314 targets associated with 36 active compounds present in TRQ. Integration of multiple databases yielded 47 DF-related genes. Then, 15 hub targets of TRQ in DF were determined by calculating the network topology parameters (Degree). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these pathways were primarily enriched in the processes of cytokine activation and leukocyte cross-endothelial migration, with significant enrichment of cell adhesion molecules. Molecular docking revealed favorable binding affinity between TRQ's key active compounds and the predicted hub targets. Transcriptome sequencing results showed TRQ's ability to restore the expression of vascular cell adhesion molecule-1 (VCAM-1) post-DENV infection. Finally, TRQ was found to modulate the immune status by regulating the nuclear factor kappa-B (NF-κB)- intercellular cell adhesion molecule-1 (ICAM-1)/VCAM-1 axis, as well as reduce immune cell alterations, inflammatory factor secretion, vascular permeability, and bleeding tendencies induced by DENV infection.
CONCLUSION:Our research suggests that TRQ exerts therapeutic effects on DF by regulating the NF-κB-ICAM-1/VCAM-1 axis.