4
Clinical Trials associated with Virus-specific-CD19.CAR(Baylor College of Medicine)Phase I Study of the Administration of CD19 Chimeric Antigen Receptor Multivirus-Specific Cytotoxic T Lymphocytes for Prophylaxis or Therapy of Relapse of CD19 Positive Malignancies After Allogeneic Hematopoietic Stem Cell Transplantation
This study is for patients that are having a bone marrow or stem cell transplant for either a type of cancer of the blood called Leukemia or a cancer of the lymph nodes called Non-Hodgkin's Lymphoma (NHL). Although a transplant can cure leukemia or lymphoma, some people will relapse (return of the disease). In those who relapse, current treatment cures only a very small percentage. This study is being conducted to evaluate the safety of a new type of therapy that may help to decrease the risk of relapse or treat relapse after it has occurred.
The body has different ways of fighting infection and disease. This study combines two of those ways, antibodies and T cells. Antibodies are proteins that protect the body from bacterial and other diseases. T cells are infection-fighting blood cells that can kill other cells, including tumor cells. Antibodies and T cells have been used to treat patients with cancers; they have shown promise, but have not been strong enough to cure most patients.
The antibody used in this study is called anti-CD19. This antibody is attracted to cancer cells because of a substance on the outside of these cells called CD19. For this study, the anti-CD19 antibody has been changed so that instead of floating free in the blood it is now joined to T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor (also known as a CAR T cell). Although anti-CD19 antibodies or chimeric receptors can kill cancer cells, unfortunately they sometimes do not last long enough to destroy all of the cancer cells.
These CD19 chimeric receptor multivirus specific T cells are an investigational product not approved by the Food and Drug Administration.
The purpose of this study is to find the biggest dose of chimeric T cells that is safe to administer, to determine what the side effects are, to see how long the T cells last and to evaluate whether this therapy might help prevent infections and relapse in people with CD19+ leukemia or lymphoma having a bone marrow transplant.
/ Unknown statusPhase 1/2IIT Phase I/II study of anti-CD19 Chimeric Antigen Receptor-Expressing T cells in pediatric patients affected by relapsed/refractory CD19+ Acute Lymphoblastic Leukemia and Diffuse Large B Cell Lymphoma (DLBCL) or Primary Mediastinal B Cell Lymphoma (PML) - CD19-CAR_Lenti
Start Date13 Jan 2021 |
Sponsor / Collaborator- |
Phase I Study of Activated T-Cells Expressing Second or Third Generation CD19-Specific Chimeric Antigen Receptors for Advanced B-Cell Non-Hodgkin's Lymphoma, Acute Lymphocytic Leukemia and Chronic Lymphocytic Leukemia (SAGAN)
Subjects on this study have a type of lymph gland cancer called Non-Hodgkin Lymphoma, acute lymphocytic leukemia, or chronic Lymphocytic Leukemia (these diseases will be referred to as "lymphoma" or "leukemia"). The lymphoma or leukemia has come back or has not gone away after treatment.
The body has different ways of fighting infection and disease. No one way seems perfect for fighting cancers. This research study combines two different ways of fighting disease, antibodies and T cells, hoping that they will work together. Both antibodies and T cells have been used to treat patients with cancer. They have shown promise, but have not been strong enough to cure most patients.
T cells can kill tumor cells but normally there are not enough of them to kill all the tumor cells. Some researchers have taken T cells from a person's blood, grown more of them in the laboratory and then given them back to the person.
The antibody used in this study is called anti-CD19. It first came from mice that have developed immunity to human lymphoma. This antibody sticks to lymphoma cells because of a substance on the outside of these cells called CD19. CD19 antibodies have been used to treat people with lymphoma and leukemia. For this study, anti-CD19 has been changed so that instead of floating free in the blood it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor.
In the laboratory, the investigators found that T cells work better if they also add proteins that stimulate T cells, such as one called CD28. Adding the CD28 makes the cells last longer in the body but not long enough for them to be able to kill the lymphoma cells. The investigators believe that if they add an extra stimulating protein, called CD137, the cells will have a better chance of killing the lymphoma cells.
The investigators are going to see if this is true by putting the CD19 chimeric receptor with CD28 alone into half of the cells and the CD19 chimeric receptor with CD28 and CD137 into the other half of the cells. These CD19 chimeric receptor T cells with CD28 and with or without CD137 are investigational products not approved by the FDA.
The purpose of this study is to find the biggest dose of chimeric T cells that is safe, to see how long the T cell with each sort of chimeric receptor lasts, to learn what the side effects are and to see whether this therapy might help people with lymphoma or leukemia.
100 Clinical Results associated with Virus-specific-CD19.CAR(Baylor College of Medicine)
100 Translational Medicine associated with Virus-specific-CD19.CAR(Baylor College of Medicine)
100 Patents (Medical) associated with Virus-specific-CD19.CAR(Baylor College of Medicine)
100 Deals associated with Virus-specific-CD19.CAR(Baylor College of Medicine)