Environmental chemicals have been indicated to cause disruption of thyroid homeostasis in human populations. However, previous studies mostly focused on single group of chemicals. Herein, we investigate the independent and combined effects of multiple pollutants on thyroid homeostasis, including thyroid-stimulating hormone (TSH), total and free thyroxine (tT4 and fT4) and total and free triiodothyronine (tT3 and fT3) in elderly people. These environmental pollutants (n = 144) are from ten categories, including phenols, parabens, perfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), synthetic pyrethroids (SPs), herbicides, and metals. Few studies have evaluated the health risks of these 144 chemicals, especially their joint effects. In single-pollutant evaluations, multiple linear regression (MLR) models were used to estimate the independent associations between multiple exposures and thyroid biomarkers. In multi-pollutant evaluations, elastic net regression and Bayesian kernel machine regression (BKMR) models were used to estimate the combined associations. The MLR models showed that 41 chemicals were significantly related to THs levels. BKMR models revealed the most important chemical groups: metals for TSH, PAHs, SPs and PCBs for tT4, herbicides and SPs for tT3. This study will contribute to the understanding of multipollutant exposure and help prioritize specific chemical groups related to thyroid hormone disruption.